five times a

analyzing architecture at any angle

Month: May, 2014

/vid/pic/ tensegrity system

This slideshow requires JavaScript.

other links

http://www.aa64.net/?portfolio=tensegrity-bridge

http://www.maison-objet.com/en/paris/exhibitors/january-2014/point-contrepoint

http://www.dezeen.com/2010/07/24/observation-tower-on-the-river-mur-by-terrainloenhartmayr/

 

source

link https://www.google.pl/search?q=tensegrity+system&rlz=1C1GIGM_enPL569PL569&es_sm=93&source=lnms&sa=X&ei=L4eIU4i9Fc7B7AaPwoC4CA&ved=0CAUQ_AUoAA&biw=1055&bih=553&dpr=1.75

post https://www.facebook.com/groups/SCNinARCH/permalink/306351522873284/

Advertisements

/vid/ Greg Lynn: Organic algorithms in architecture

Greg Lynn talks about the mathematical roots of architecture — and how calculus and digital tools allow modern designers to move beyond the traditional building forms. A glorious church in Queens (and a titanium tea set) illustrate his theory.

 

source

link http://www.ted.com/talks/greg_lynn_on_organic_design#t-3272

post https://www.facebook.com/groups/SCNinARCH/permalink/304752156366554/

/vid/ Joshua Prince-Ramus: Designing the Seattle Central Library

Architect Joshua Prince-Ramus takes the audience on dazzling, dizzying virtual tours of three recent projects: the Central Library in Seattle, the Museum Plaza in Louisville and the Charles Wyly Theater in Dallas.

 

source

link http://www.ted.com/talks/joshua_prince_ramus_on_seattle_s_library

post https://www.facebook.com/groups/PHILinDSGN/permalink/304376829728403/

/vid/ Indesem 87: Aldo van Eyck

Lecture by Aldo van Eyck
International Design Seminar (Indesem) 1987
Faculty of Architecture, TU Delft

 

source

link https://www.youtube.com/watch?v=Uf7RyqXIYmM&feature=share

post https://www.facebook.com/groups/PHILinDSGN/permalink/303559886476764/

/vid/ Solar Roadways – Michèle Ohayon

What if roads and parking lots were solar, fueling enough energy from the sun to power nearby communities as well as electric vehicles? Scott and Julie Brusaw, the inventors/creators have the answer.

 

source

link http://www.solarroadways.com/intro.shtml

post https://www.facebook.com/groups/SCNinARCH/permalink/301410856700684/

/txt/ Why Algorithms Are The Next Star Designers

RATHER THAN USING SOFTWARE TO DRAW AND ANALYZE A DESIGNER’S VISION, AUTODESK WANTS TO USE COMPUTING POWER TO GENERATE THE IDEA ITSELF. WILL THIS RENDER DESIGNERS OBSOLETE?

The industrial designer of the future might just be a computer. The traditional design process can be a laborious one, full of iterations and tweaks to make a product just so. For years, design software makerAutodesk has been working on an alternative: a program that sorts through all the ways to make a product of specific measurements and then spits out the best option.

THE PROGRAM CAN GO THROUGH A MILLION ITERATIONS OF THE SAME CHAIR IN THE TIME IT WOULD TAKE A DESIGNER TO DESCRIBE JUST ONE CHAIR.

“In the past couple of years, we have experienced such an explosion of computing power that we can completely change the design equation,” says Autodesk chief technology officer Jeff Kowalski. Rather than using software to draw and analyze a designer’s vision, Autodesk wants to use that computing power to generate the idea itself–by running through a nearly infinite number of ways to build the same product.

3029756-inline-titanium-3d-print-c-v02

Though still in the experimental phase, Autodesk has been working on computational design for the last seven years through research projects such as Project Dreamcatcher, a system that generates CAD geometry based on a list of functional requirements. This approach could prove especially effective in sectors where being light and strong are of the utmost importance–as with cars and airplanes, where extra pounds have a direct impact on fuel efficiency.

COMPUTATIONAL DESIGN ISN’T AIMED AT REPLACING HUMAN INSIGHT.

Here’s how it works. You type in a set of constraints for the product. Then an algorithm “will go through a nearly infinite set of results and head towards ones that are going to satisfy the designer,” Kowalksi explains. Say you want a chair that needs to support 200 pounds of weight and be two feet off the ground while using the least amount of material possible. The program might start off with 1,000 ways to make the same chair, and then intermix what it sees as the most effective components of those 1,000 chairs to make 1,000 new options. It can go through a million iterations of the same chair “in the time that it would take the designer to describe just one.” It can also suggest what type of material to use.

A computer isn’t constrained by preconceived notions of what a chair should look like. The example above, chosen from several designs the algorithm generated, has a curvy, slightly portly, webbed aesthetic, quite unlike our traditional conception of how a chair should look. Other options for making the same chair might include straighter legs, or just a single pedestal leg, but the algorithm is capable of generating a variety of different designs that all meet the required criteria.

3029756-inline-image3

It’s not a process that’s limited to making chairs. “This applies to buildings, bridges, automotive parts–everything we do where we have to draw things,” Kowalski explains. It could be used to design a lightweight underlying structure of, say, a bicycle, which could then be covered by a skin to give it a different look–so you’re not limited to the lattice aesthetic, even if that’s the most efficient material for that product.

Computational design isn’t aimed at replacing human insight. People are still better at making more subjective selections over issues such as aesthetics. But the program certainly does serve up a panoply of options and can help sort through some of the more tedious aspects of the design process.

[Images: Courtesy of Autodesk]

 

source

link http://www.fastcodesign.com/3029756/why-algorithms-are-the-next-star-designers#5

post https://www.facebook.com/groups/SCNinARCH/permalink/300933810081722/

/vid/ Architectural Innovation Driven by Necessity. Lord Norman Foster at TEDx Institut Le Rosey

 

source

link https://www.youtube.com/watch?v=X7Qmn58xVUQ

post https://www.facebook.com/groups/PHILinDSGN/permalink/297193327113420/?stream_ref=2

/vid/ Introducing the Altaeros BAT: The Next Generation of Wind Power

Altaeros Energies is announcing the first planned commercial demonstration of its BAT (Buoyant Airborne Turbine) product in partnership with the Alaska Energy Authority. The Alaska project will deploy the BAT at a height of 1,000 feet above ground, a height that will break the world record for the highest wind turbine in the world. Altaeros has designed the BAT to generate consistent, low cost energy for the remote power and microgrid market, including remote and island communities; oil & gas, mining, agriculture, and telecommunication firms; disaster relief organizations; and military bases. The BAT uses a helium-filled, inflatable shell to lift to high altitudes where winds are stronger and more consistent than those reached by traditional tower-mounted turbines. High strength tethers hold the BAT steady and send electricity down to the ground. The lifting technology is adapted from aerostats, industrial cousins of blimps, which have lifted heavy communications equipment into the air for decades.

source

link https://www.youtube.com/watch?v=kldA4nWANA8

post https://www.facebook.com/groups/SCNinARCH/permalink/296880167153753/?stream_ref=2